Information Theoretic Key Frame Selection for Action Recognition
نویسندگان
چکیده
This paper presents an approach for human action recognition by finding the discriminative key frames from a video sequence and representing them with the distribution of local motion features and their spatiotemporal arrangements. In this approach, the key frames of the video sequence are selected by their discriminative power and represented by the local motion features detected in them and integrated from their temporal neighbors. In the key frame’s representation, the spatial arrangements of the motion features are captured in a hierarchical spatial pyramid structure. By using frame by frame voting for the recognition, experiments have demonstrated improved performances over most of the other known methods on the popular benchmark data sets.
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملBoosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition
In this paper we propose a novel method for human action recognition based on boosted key-frame selection and correlated pyramidal motion feature representations. Instead of using an unsupervised method to detect interest points, a Pyramidal Motion Feature (PMF), which combines optical flow with a biologically inspired feature, is extracted from each frame of a video sequence. The AdaBoost lear...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملAction Recognition using Key-Frame Features of Depth Sequence and ELM
Recently, the rapid development of inexpensive RGB-D sensor, like Microsoft Kinect, provides adequate information for human action recognition. In this paper, a recognition algorithm is presented in which feature representation is generated by concatenating spatial features from human contour of key frames and temporal features from time difference information of a sequence. Then, an improved m...
متن کاملKey Frame Selection for One-Two Hand Gesture Recognition with HMM
The sign language recognition is the most popular research area involving computer vision, pattern recognition and image processing. It enhances communication capabilities of the mute person. In this paper, I present an object based key frame selection. Forward Algorithm is used for shape similarity for one and two handed gesture recognition. That recognition is with feature and without feature...
متن کامل